
Week 14 - Friday

 What did we talk about last time?
 Review of second third of course
 Recurrence relations
 Divide and conquer

▪ Counting inversions
▪ Closest pair of points
▪ Integer multiplication

 Master theorem
 Dynamic programming

▪ Weighted interval scheduling
▪ Subset sum
▪ Knapsack
▪ Sequence alignment

 Each of the following equations is made of matches and
written using Roman numerals

 Unfortunately, each equation is wrong
 Move a single match stick in each equation to correct the

error
 VI = IV – III (12 matches)
 XIV – V = XX (14 matches)
 X = VIII – II (12 matches)
 VII = I (7 matches but bizarre)

 Final exam:
 Wednesday, April 24, 2024
 8:00 – 10:00 a.m.

 It will mostly be short answer
 There will be diagrams
 There might be a matching problem
 There will likely be a (simple) proof
 It will be 50% longer than previous exams, but you will have

100% more time

 A flow network is a weighted, directed graph with positive
edge weights
 Think of the weights as capacities, representing the maximum units

that can flow across an edge
 It has a source s (where everything comes from)
 And a sink t (where everything goes to)

 Some books refer to this kind of flow network specifically as
an st-flow network

 A common flow problem is to find the maximum flow
 A maximum flow is a flow such that the amount leaving s and

the amount going into t is as large as possible
 In other words:
 The maximum amount of flow gets from s to t
 No edge has more flow than its capacity
 The flow going into every node (except s and t) is equal to the flow

going out

s t

a b

c d

e f

4

5 3

7 4

3

7

6
41

5

6

 Ford-Fulkerson is a family of algorithms for finding the
maximum flow

1. Start with zero flow on all edges
2. Find an augmenting path (increasing flow on forward edges

and decreasing flow on backwards edges)
3. If you can still find an augmenting path in the residual graph,

go back to Step 2

 Recall that a bipartite graph is one whose nodes can be
divided into two disjoint sets X and Y

 Every edge has one end in set X and the other in set Y
 There are no edges from a node inside set X to another node in set X
 There are no edges from a node inside set Y to another in set Y

 Equivalently, a graph is bipartite if and only if it contains no
odd cycles

 Matching means pairing up nodes in set X with nodes in set Y
 A node can only be in one pair
 A perfect matching is when every node in set X and every

node in set Y is matched
 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as

many nodes are matched up as possible

A B C D E F

G H I J K L

X

Y

X

Y

t

A B C D E F

G H I J K L

s

 Take a bipartite graph G and turn it into a directed graph G'
 Create a source node s and a sink node t
 Connect directed edges from the source to all the nodes in set

X
 Connect directed edges from all the nodes in set Y to the sink
 Change all the undirected edges from X to Y to directed edges

from X to Y
 Set the capacities of all edges to 1

 We run the Ford-Fulkerson algorithm to find the maximum
flow on our new graph

 Since all edges from X to Y have capacity 1, they will either
have a flow of 1 or of 0

 If they have a flow of 1, they are in the matching
 If they have a flow of 0, they aren't
 The maximum flow value tells us how many nodes are

matched

 To make the algorithm go faster, we can start with a maximal
matching

 A maximal matching is not necessarily maximum, but you
can't add edges to it directly without removing other edges

 In essence, arbitrarily match unmatched nodes until you can't
anymore

 Then start the process of looking for augmenting paths

1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node

in X and ends at an unmatched node in Y
3. If there is such a path, switch all the edges along the path

from being in the matching to being out and vice versa
4. If there is another augmenting path, go back to Step 2

 How can we compare the hardness of problems?
 How are we able to say that NP-complete problems are all the

same level of hardness?
 We want a formal way to describe that problem X is at least as

hard as problem Y
 The tool we use to argue that X is at least as hard as Y is called

a reduction

 We imagine that we have a black box that can solve problem
X instantly

 Can any instance of problem Y be solved by doing polynomial
work to format the input for Y into input for X followed by a
polynomial number of calls to the black box that solves X?

 If the answer is yes, we write Y ≤P X and say that Y is
polynomial-time reducible to X

 We didn't really study logic in this class
 If you have an implication p→ q that is true, its contrapositive

~q→ ~p is also true
 Implication:
 Suppose Y ≤P X. If X can be solved in polynomial time, then Y can be

solved in polynomial time.
 Contrapositive:
 Suppose Y ≤P X. If Y cannot be solved in polynomial time, then X

cannot be solved in polynomial time.

 Recall the independent set graph problem
 Given an undirected graph, find the largest collection of nodes

that are not connected to each other
 Practical application:
 Nodes represent friends of yours
 An edge between those two nodes means they hate each other
 What's the largest group of friends you could invite to a party if you

don't want any to hate each other?

A

H

G

FE

D

C

B

 Independent set is an NP-complete problem
 We don't know a polynomial-time algorithm for it, but we

don't know how to prove that there isn't one
 We just stated the optimization version of independent set:
 Find the largest independent set

 But there is also a decision version:
 Given a graph G and a number k, does G contain an independent set

of size at least k?

 The vertex cover problem is another graph problem:
 Given a graph G = (V, E), we say that a set of nodes S⊆ V is a vertex

cover if every edge e ∈ E has at least one end in S
 In other words, find a set of vertices such that all edges touch at least

one
 It's easy to find a big vertex cover: all vertices
 It's hard to find a small one
 Decision version:
 Given a graph G and a number k, does G contain a vertex cover at

size at most k?

 Claim: Let G = (V,E) be a graph. S is an independent set if and
only if its complement V – S is a vertex cover.

 Proof:
 Suppose that S is an independent set. Consider an edge e = (u,v).

Since S is independent, it cannot be the case that both u and v are in
S. Thus, one of them must be in V – S. It must be the case that every
edge has at least one end in V – S, so V – S is a vertex cover.

 Suppose that V – S is a vertex cover. Consider any two nodes
u and v in S. If they were joined by edge e, then neither end of
e would lie in V – S, contradicting the assumption that V – S is
a vertex cover. Thus, it must be the case that no two nodes in
S are joined by an edge, so S must be an independent set.

∎

 Proof:
 If we have a black box to solve independent set, we can decide

whether G has a vertex cover of size at most k by asking the black
box whether G has an independent set of size at least n – k.

∎

 Consider a set of n Boolean variables, x1, x2, …, xn
 Each value is 0 or 1
 A term is either a variable 𝑥𝑥𝑖𝑖or its negation �𝑥𝑥𝑖𝑖
 A clause is a disjunction (set of logical ORs) of terms, like:

𝑥𝑥1 ∨ 𝑥𝑥6 ∨ 𝑥𝑥5 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4
 A clause has length l if it has l terms
 A truth assignment is an assignment of 0 or 1 to every 𝑥𝑥𝑖𝑖

 A clause is satisfied if a truth assignment evaluates it to true
 A collection of clauses is satisfied if a truth assignment

satisfies each clause
 Another way to view satisfiability is that, given clauses C1, C2,

…, Ck, the following statement evaluates to true with some
truth assignment:

𝐶𝐶1 ∧ 𝐶𝐶2 ∧ ⋯∧ 𝐶𝐶𝑘𝑘

 The satisfiability problem (SAT):
 Given a set of clauses C1, C2, …, Ck over a set of variables {x1, x2, …,

xn}, is there a satisfying truth assignment?
 The 3-satisfiability problem (3-SAT) is a special case of SAT in

which all clauses have exactly three terms:
 Given a set of clauses C1, C2, …, Ck, each of length 3, over a set of

variables {x1, x2, …, xn}, is there a satisfying truth assignment?

 Is there something that sets apart problems that are NP-
complete from other problems that (probably) take
exponential time?

 Yes!
 It's easy to prove that you have an answer for one
 In other words, they're easy to check

 Input to a problem will be encoded as a finite (binary) string s
 The length of s is |s|
 For a decision problem, an algorithm A receives an input

string and returns "yes" or "no"
 This output is A(s)

 A decision problem X is the set of strings for which the answer
is "yes"

 A solves the problem X if for all strings s, A(s) = "yes" if and
only if s ∈ X

 Formally, an algorithm A has polynomial running time if
 There is a polynomial function p(x)
 Such that, for every input string s, the algorithm A terminates on s in

at most O(p(|s|)) steps
 Thus, P is the set of all decision problems X for which there is

an algorithm A with polynomial running time that solves X

 B is an efficient certifier for a problem X if:
 B is a polynomial-time algorithm that takes two input arguments s

and t
 There is a polynomial function p(x) such that, for every string s, we

have s ∈ X if and only if there exists a string t such that |t| ≤ p(|s|) and
B(s,t) = "yes"

 B can evaluate a "proof" t for input s
 You could use B as part of a brute force approach, trying lots

of strings t to see if they work for s

 NP is the set of all problems for which there exists an efficient
certifier

 Note that P⊆NP
 Why?
 We can make an efficient certifier by simply using an efficient solver
 Such a certifier could even ignore string t and check s on its own

 NP is an abbreviation for "nondeterministic polynomial" because,
for a machine that can nondeterministically explore all paths at
the same time, checking a solution and finding a solution take the
same time

 While trying to figure out if P = NP, computer scientists have
considered the hardest problems in NP
 What are those?

 A hardest problem X in NP has the following properties:
 X ∈NP
 For all Y ∈NP, Y ≤P X

 In other words, it’s a problem in NP that we can reduce all other
problems in NP to

 The hardest problems in any class are its "complete" problems
 Thus, we call the hardest problems in NP the NP-complete

problems

 Claim: Suppose X is an NP-complete problem. X is solvable in
polynomial time if and only if P = NP.

 Proof:
 If P = NP, then X can be solved in polynomial time, since X ∈NP.
 Conversely, suppose that X can be solved in polynomial time. For all

other problems Y ∈NP, Y ≤P X. Thus, all problems Y can be solved in
polynomial time and NP⊆ P. Since we already know that P⊆NP, it
would be the case that P = NP.

 Circuit satisfiability
 3-SAT
 Independent set
 Vertex cover
 Set cover
 Traveling salesman problem
 Hamiltonian cycle
 Hamiltonian path
 Graph coloring
 Subset sum
 Knapsack

 You have m machines M1, M2,…,Mm
 You have n jobs
 Each job j has a processing time tj
 We can assign jobs A(i) to machine Mi
 The total time that Mi needs to work is:

𝑇𝑇𝑖𝑖 = �
𝑗𝑗∈𝐴𝐴(𝑖𝑖)

𝑡𝑡𝑗𝑗

 We want to minimize the makespan, which is just the longest Ti
 In other words, we want the last machine running to stop running

as early as possible
 Unfortunately, doing so in NP-hard

 We use a greedy algorithm
 However, we first sort all the jobs in descending order
 Now, t1 ≥ t2 ≥ … ≥ tn
 If there are m jobs or fewer, our algorithm will be optimal, since

each machine will get at most one job
 If there are more than m jobs, 𝑇𝑇∗ ≥ 2𝑡𝑡𝑚𝑚+1
 Consider the first m + 1 sorted jobs.
 Each takes at least tm+1 time. Since there are at least m + 1 jobs and only m

machines, one machine will get at least two of these jobs.
 That machine will have processing time at least 2tm+1

 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi, and assume that Mi has at least 2 jobs
 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –

tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘

 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 Note that j ≥ m + 1, since the first m jobs will be put on m different

machines
 Thus, 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑚𝑚+1 ≤

1
2
𝑇𝑇∗

 But the optimal makespan must be at least as big as any job, thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗,
thus:

𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ +
1
2
𝑇𝑇∗ =

3
2
𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎

 Given:
 Set U of n elements
 Collection of sets S1, S2,…, Sm of subsets of U
 Each subset Si has a weight wi ≥ 0

 Find the subsets with smallest total weight whose union is
equal to all of U

 We want the most bang for our buck
 We want small weight sets with a lot of elements
 In other words, low cost per element

 So, we look at the value wi/|Si| for each set, and pick the
lowest such value set

 We keep doing that, but we only "count" the elements in each
set that still aren't covered

 Start with R = U and no sets selected
 While R≠ ∅
 Select set Si with minimum wi/|Si ∩ R|
 Delete set Si from R

 Return the selected sets

1

1

1

1

1 + ε 1 + ε
Algorithm

finds a total
weight of 4

Optimal is a
total weight of

2 + 2ε

 How good (or bad) is our set cover approximation in the worst
case?

 Let's think about the cost per item incurred by each set we add:
 cs = wi/|Si ∩ R| for all s ∈ Si ∩ R
 Imagine we assign that cost in the algorithm when we cover those

elements
 Clearly, these cs values end up being the total weight of our

solution C:

�
𝑠𝑠𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠

 To bound our analysis, we will use the idea of the harmonic
function:

𝐻𝐻 𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
1
𝑛𝑛

= 1 +
1
2

+
1
3

+ ⋯+
1
𝑛𝑛

 This function grows…slowly but infinitely
 We will not prove it here, but it turns out that H(n) is Θ(log n)

 Let d* be the size of the largest set
 Claim:
 Set cover C found by our greedy algorithm has weight at most H(d*)

times the optimal weight w*
 Proof:
 The optimal set cover C* has weight 𝑤𝑤∗ = ∑𝑆𝑆𝑖𝑖∈𝐶𝐶∗ 𝑤𝑤𝑖𝑖
 By our previous proof:

𝑤𝑤𝑖𝑖 ≥
1

𝐻𝐻(𝑑𝑑∗)
�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠

 Since C* is a set cover

�
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠

 Putting it all, insanely, together:

𝑤𝑤∗ = �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

𝑤𝑤𝑖𝑖 ≥ �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

1
𝐻𝐻(𝑑𝑑∗) �

𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 ≥
1

𝐻𝐻 𝑑𝑑∗ �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠 =
1

𝐻𝐻 𝑑𝑑∗ �
𝑆𝑆𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖

∎

 All of that madness means that our approximation algorithm
to set cover might return a set cover costing O(log d*) times
the true optimal

 Worse, d* could be some constant fraction of n, making the
approximation an O(log n) times worse than optimal

 This approximation is worse than any constant
approximation, since our approximation actually will degrade
as n gets larger

 To top it off, there's even a proof that this is the best you can
approximate set cover, unless P = NP

 We've seen knapsack in dynamic programming (but with a
pseudo-polynomial running time)

 We've seen knapsack as an NP-complete problem
 Now, can we approximate it in fully polynomial time?
 Recall:
 We have n items
 Each item has a weight wi and a value vi

 We want to maximize total value without going over our weight
capacity W

 Our algorithm will take those items and the capacity W as well
as a parameter ε

 We will find a set of items S within the weight capacity whose
value is at worst 1

1+𝜀𝜀
of the optimal!

 And the algorithm will be polynomial for any particular choice
of ε
 But it will not be polynomial in ε, if that makes sense

 This kind of algorithm is called a polynomial-time
approximation scheme (PTAS)

 We had a pseudo-polynomial algorithm for knapsack that ran
in time O(nW)

 The book gives details on how we can flip around weights and
values to get a dynamic programming knapsack algorithm
that runs in time O(n2v*) where v* is the largest value of any
item

 Let's assume that algorithm is correct and build our
approximation algorithm out of it

 We use a rounding factor b
 Each rounded value �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖/𝑏𝑏 𝑏𝑏
 Note that 𝑣𝑣𝑖𝑖 ≤ �𝑣𝑣𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 + 𝑏𝑏
 To get small values, we can scale the rounded values down by

b:

�𝑣𝑣𝑖𝑖 =
�𝑣𝑣𝑖𝑖
𝑏𝑏

= 𝑣𝑣𝑖𝑖/𝑏𝑏
 Note that the knapsack problem with values �𝑣𝑣𝑖𝑖 has the same

optimum solution as the problem with �𝑣𝑣𝑖𝑖, if you scale the
answers by b

 Knapsack-Approx(ε)
 Set b = (ε/(2n)) maxi vi

 Solve the Knapsack problem with values �𝑣𝑣𝑖𝑖
 Return the set S of items found

 We only rounded the values, not the weights, so the answer
we get is legal

 The algorithm we use as a subroutine runs in time O(n2v*)
where v* is the biggest value

 Since b = (ε/(2n)) maxi vi, the biggest value vj will also have the
biggest rounded value:

�𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑗𝑗/𝑏𝑏 =
𝑣𝑣𝑗𝑗

𝑣𝑣𝑗𝑗𝜀𝜀/(2𝑛𝑛)
=

2𝑛𝑛
𝜀𝜀

= 𝑐𝑐 � 𝑛𝑛𝜀𝜀−1

 So our algorithm on rounded values runs in time O(n3ε-1)

 We established that ∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖 ≥ ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑏𝑏
 Since ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 ≥ �𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑏𝑏,

�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 ≥ 2𝜀𝜀−1𝑛𝑛𝑏𝑏 − 𝑛𝑛𝑏𝑏 = (2𝜀𝜀−1 − 1)𝑛𝑛𝑏𝑏

 For ε ≤ 1, 2 − 𝜀𝜀 ≥ 1, thus,

𝑛𝑛𝑏𝑏 ≤ 2 − 𝜀𝜀 𝑛𝑛𝑏𝑏 ≤ 𝜀𝜀�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

 Leading finally to

�
𝑖𝑖∈𝑆𝑆∗

𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 + 𝑛𝑛𝑏𝑏 ≤ (1 + 𝜀𝜀)�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

 Some NP-hard problems can be approximated within a
constant factor

 Some (like knapsack) can be approximated even better
 Within a factor of 1 + 𝜀𝜀 where we can pick the value of 𝜀𝜀

 Some can't be approximated within even a constant factor
 Unless P = NP

 There is no next time!

 Finish Assignment 7
 Due tonight by midnight!

 Review chapters 1 – 8 and 11
 Final exam:
 Wednesday, April 24, 2024
 8:00 – 10:00 a.m.

	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Review
	Final exam
	Maximum Flow
	Flow networks
	Maximum flow
	Flow network
	Ford-Fulkerson algorithm
	Bipartite Matching
	Bipartite graphs
	Maximum matching
	Bipartite matching problem
	Maximum flow problem
	An easy change
	Algorithmic changes
	Maximal matching
	Matching algorithm
	NP-Completeness
	Characterizing hardness
	Reductions
	What about the other direction?
	Independent set
	Independent set example
	Hardness of independent set
	Vertex cover
	Relationship between independent set and vertex cover
	Proof continued
	Vertex cover ≤P independent set
	SAT and 3-SAT
	Satisfiability
	Satisfiability
	What makes a problem NP?
	Problems and algorithms
	The class of problems P
	Efficient certification
	The class of problems NP
	NP-Complete Problems
	NP-complete problems
	An important consequence
	NP-complete problems
	Approximation Algorithms
	Load balancing
	Improved approximation algorithm
	Sorted greedy algorithm gets a makespan T ≤ 𝟑 𝟐 T*
	Proof continued
	Set cover (optimization version)
	Algorithm design
	Greedy set cover algorithm
	Set cover example
	Analysis
	Unfortunately: math
	Final approximation bound
	Approximation bound continued
	Log approximation
	Knapsack
	The best approximation yet!
	Algorithm design
	Rounding notation
	Approximate knapsack algorithm
	Approximation running time
	Approximation bound continued
	Approximation algorithms
	Upcoming
	Next time…
	Reminders

