
Week 14 - Friday



 What did we talk about last time?
 Review of second third of course
 Recurrence relations
 Divide and conquer

▪ Counting inversions
▪ Closest pair of points
▪ Integer multiplication

 Master theorem
 Dynamic programming

▪ Weighted interval scheduling
▪ Subset sum
▪ Knapsack
▪ Sequence alignment







 Each of the following equations is made of matches and 
written using Roman numerals

 Unfortunately, each equation is wrong
 Move a single match stick in each equation to correct the 

error
 VI = IV – III (12 matches)
 XIV – V = XX (14 matches)
 X = VIII – II (12 matches)
 VII = I (7 matches but bizarre)





 Final exam:
 Wednesday, April 24, 2024
 8:00 – 10:00 a.m.

 It will mostly be short answer
 There will be diagrams
 There might be a matching problem
 There will likely be a (simple) proof
 It will be 50% longer than previous exams, but you will have 

100% more time





 A flow network is a weighted, directed graph with positive 
edge weights
 Think of the weights as capacities, representing the maximum units 

that can flow across an edge
 It has a source s (where everything comes from) 
 And a sink t (where everything goes to)

 Some books refer to this kind of flow network specifically as 
an st-flow network



 A common flow problem is to find the maximum flow
 A maximum flow is a flow such that the amount leaving s and 

the amount going into t is as large as possible
 In other words:
 The maximum amount of flow gets from s to t
 No edge has more flow than its capacity
 The flow going into every node (except s and t) is equal to the flow 

going out
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 Ford-Fulkerson is a family of algorithms for finding the 
maximum flow

1. Start with zero flow on all edges
2. Find an augmenting path (increasing flow on forward edges 

and decreasing flow on backwards edges)
3. If you can still find an augmenting path in the residual graph, 

go back to Step 2





 Recall that a bipartite graph is one whose nodes can be 
divided into two disjoint sets X and Y

 Every edge has one end in set X and the other in set Y
 There are no edges from a node inside set X to another node in set X
 There are no edges from a node inside set Y to another in set Y

 Equivalently, a graph is bipartite if and only if it contains no 
odd cycles



 Matching means pairing up nodes in set X with nodes in set Y
 A node can only be in one pair
 A perfect matching is when every node in set X and every 

node in set Y is matched
 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as 

many nodes are matched up as possible
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 Take a bipartite graph G and turn it into a directed graph G'
 Create a source node s and a sink node t
 Connect directed edges from the source to all the nodes in set 

X
 Connect directed edges from all the nodes in set Y to the sink
 Change all the undirected edges from X to Y to directed edges 

from X to Y
 Set the capacities of all edges to 1



 We run the Ford-Fulkerson algorithm to find the maximum 
flow on our new graph

 Since all edges from X to Y have capacity 1, they will either 
have a flow of 1 or of 0

 If they have a flow of 1, they are in the matching
 If they have a flow of 0, they aren't
 The maximum flow value tells us how many nodes are 

matched



 To make the algorithm go faster, we can start with a maximal 
matching

 A maximal matching is not necessarily maximum, but you 
can't add edges to it directly without removing other edges

 In essence, arbitrarily match unmatched nodes until you can't 
anymore

 Then start the process of looking for augmenting paths



1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node 

in X and ends at an unmatched node in Y
3. If there is such a path, switch all the edges along the path 

from being in the matching to being out and vice versa
4. If there is another augmenting path, go back to Step 2





 How can we compare the hardness of problems?
 How are we able to say that NP-complete problems are all the 

same level of hardness?
 We want a formal way to describe that problem X is at least as 

hard as problem Y
 The tool we use to argue that X is at least as hard as Y is called 

a reduction



 We imagine that we have a black box that can solve problem 
X instantly

 Can any instance of problem Y be solved by doing polynomial 
work to format the input for Y into input for X followed by a 
polynomial number of calls to the black box that solves X?

 If the answer is yes, we write Y ≤P X and say that Y is 
polynomial-time reducible to X



 We didn't really study logic in this class
 If you have an implication p→ q that is true, its contrapositive

~q→ ~p is also true 
 Implication:
 Suppose  Y ≤P X. If X can be solved in polynomial time, then Y can be 

solved in polynomial time.
 Contrapositive:
 Suppose  Y ≤P X. If Y cannot be solved in polynomial time, then X

cannot be solved in polynomial time.



 Recall the independent set graph problem
 Given an undirected graph, find the largest collection of nodes 

that are not connected to each other
 Practical application:
 Nodes represent friends of yours
 An edge between those two nodes means they hate each other
 What's the largest group of friends you could invite to a party if you 

don't want any to hate each other?
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 Independent set is an NP-complete problem
 We don't know a polynomial-time algorithm for it, but we 

don't know how to prove that there isn't one
 We just stated the optimization version of independent set:
 Find the largest independent set

 But there is also a decision version:
 Given a graph G and a number k, does G contain an independent set 

of size at least k?



 The vertex cover problem is another graph problem:
 Given a graph G = (V, E), we say that a set of nodes S⊆ V is a vertex 

cover if every edge e ∈ E has at least one end in S
 In other words, find a set of vertices such that all edges touch at least 

one
 It's easy to find a big vertex cover: all vertices
 It's hard to find a small one
 Decision version:
 Given a graph G and a number k, does G contain a vertex cover at 

size at most k?



 Claim: Let G = (V,E) be a graph.  S is an independent set if and 
only if its complement V – S is a vertex cover.

 Proof:
 Suppose that S is an independent set.  Consider an edge e = (u,v).  

Since S is independent, it cannot be the case that both u and v are in 
S.  Thus, one of them must be in V – S.  It must be the case that every 
edge has at least one end in V – S, so V – S is a vertex cover.



 Suppose that V – S is a vertex cover.  Consider any two nodes 
u and v in S.  If they were joined by edge e, then neither end of 
e would lie in V – S, contradicting the assumption that V – S is 
a vertex cover.  Thus, it must be the case that no two nodes in 
S are joined by an edge, so S must be an independent set.

∎



 Proof:
 If we have a black box to solve independent set, we can decide 

whether G has a vertex cover of size at most k by asking the black 
box whether G has an independent set of size at least n – k.

∎



 Consider a set of n Boolean variables, x1, x2, …, xn
 Each value is 0 or 1
 A term is either a variable 𝑥𝑥𝑖𝑖or its negation �𝑥𝑥𝑖𝑖
 A clause is a disjunction (set of logical ORs) of terms, like:

𝑥𝑥1 ∨ 𝑥𝑥6 ∨ 𝑥𝑥5 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4
 A clause has length l if it has l terms
 A truth assignment is an assignment of 0 or 1 to every 𝑥𝑥𝑖𝑖



 A clause is satisfied if a truth assignment evaluates it to true
 A collection of clauses is satisfied if a truth assignment 

satisfies each clause
 Another way to view satisfiability is that, given clauses C1, C2, 

…, Ck, the following statement evaluates to true with some 
truth assignment:

𝐶𝐶1 ∧ 𝐶𝐶2 ∧ ⋯∧ 𝐶𝐶𝑘𝑘



 The satisfiability problem (SAT):
 Given a set of clauses C1, C2, …, Ck over a set of variables {x1, x2, …, 

xn}, is there a satisfying truth assignment?
 The 3-satisfiability problem (3-SAT) is a special case of SAT in 

which all clauses have exactly three terms:
 Given a set of clauses C1, C2, …, Ck, each of length 3, over a set of 

variables {x1, x2, …, xn}, is there a satisfying truth assignment?



 Is there something that sets apart problems that are NP-
complete from other problems that (probably) take 
exponential time?

 Yes!
 It's easy to prove that you have an answer for one
 In other words, they're easy to check



 Input to a problem will be encoded as a finite (binary) string s
 The length of s is |s|
 For a decision problem, an algorithm A receives an input 

string and returns "yes" or "no"
 This output is A(s)

 A decision problem X is the set of strings for which the answer 
is "yes"

 A solves the problem X if for all strings s, A(s) = "yes" if and 
only if s ∈ X



 Formally, an algorithm A has polynomial running time if
 There  is a polynomial function p(x)
 Such that, for every input string s, the algorithm A terminates on s in 

at most O(p(|s|)) steps
 Thus, P is the set of all decision problems X for which there is 

an algorithm A with polynomial running time that  solves X



 B is an efficient certifier for a problem X if:
 B is a polynomial-time algorithm that takes two input arguments s

and t
 There is a polynomial function p(x) such that, for every string s, we 

have s ∈ X if and only if there exists a string t such that |t| ≤ p(|s|) and 
B(s,t) = "yes"

 B can evaluate a "proof" t for input s
 You could use B as part of a brute force approach, trying lots 

of strings t to see if they work for s



 NP is the set of all problems for which there  exists an efficient 
certifier

 Note that P⊆NP
 Why?
 We can make an efficient certifier by simply using an efficient solver
 Such a certifier could even ignore string t and check s on its own

 NP is an abbreviation for "nondeterministic polynomial" because, 
for a machine that can nondeterministically explore all paths at 
the same time, checking a solution and finding a solution take the 
same time





 While trying to figure out if P = NP, computer scientists have 
considered the hardest problems in NP
 What are those?

 A hardest problem X in NP has the following properties:
 X ∈NP
 For all Y ∈NP, Y ≤P X

 In other words, it’s a problem in NP that we can reduce all other 
problems in NP to

 The hardest problems in any class are its "complete" problems
 Thus, we call the hardest problems in NP the NP-complete

problems



 Claim: Suppose X is an NP-complete problem. X is solvable in 
polynomial time if and only if P = NP.

 Proof:
 If P = NP, then X can be solved in polynomial time, since X ∈NP.
 Conversely, suppose that X can be solved in polynomial time.  For all 

other problems Y ∈NP, Y ≤P X.  Thus, all problems Y can be solved in 
polynomial time and NP⊆ P.  Since we already know that P⊆NP, it 
would be the case that P = NP.



 Circuit satisfiability
 3-SAT
 Independent set
 Vertex cover
 Set cover
 Traveling salesman problem
 Hamiltonian cycle
 Hamiltonian path
 Graph coloring
 Subset sum
 Knapsack





 You have m machines M1, M2,…,Mm
 You have n jobs
 Each job j has a processing time tj
 We can assign jobs A(i) to machine Mi
 The total time that Mi needs to work is:

𝑇𝑇𝑖𝑖 = �
𝑗𝑗∈𝐴𝐴(𝑖𝑖)

𝑡𝑡𝑗𝑗

 We want to minimize the makespan, which is just the longest Ti
 In other words, we want the last machine running to stop running 

as early as possible
 Unfortunately, doing so in NP-hard



 We use a greedy algorithm
 However, we first sort all the jobs in descending order
 Now, t1 ≥ t2 ≥ … ≥ tn
 If there are m jobs or fewer, our algorithm will be optimal, since 

each machine will get at most one job
 If there are more than m jobs, 𝑇𝑇∗ ≥ 2𝑡𝑡𝑚𝑚+1
 Consider the first m + 1 sorted jobs.
 Each takes at least tm+1 time.  Since there are at least m + 1 jobs and only m

machines, one machine will get at least two of these jobs.
 That machine will have processing time at least 2tm+1



 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi, and assume that Mi has at least 2 jobs
 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –

tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘



 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 Note that j ≥ m + 1, since the first m jobs will be put on m different 

machines
 Thus, 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑚𝑚+1 ≤

1
2
𝑇𝑇∗

 But the optimal makespan must be at least as big as any job, thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗, 
thus:

𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ +
1
2
𝑇𝑇∗ =

3
2
𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎



 Given:
 Set U of n elements
 Collection of sets S1, S2,…, Sm of subsets of U
 Each subset Si has a weight wi ≥ 0

 Find the subsets with smallest total weight whose union is 
equal to all of U



 We want the most bang for our buck
 We want small weight sets with a lot of elements
 In other words, low cost per element

 So, we look at the value wi/|Si| for each set, and pick the 
lowest such value set

 We keep doing that, but we  only "count" the elements in each 
set that still aren't covered



 Start with R = U and no sets selected
 While R≠ ∅
 Select set Si with minimum wi/|Si ∩ R|
 Delete set Si from R

 Return  the selected sets
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 How good (or bad) is our set cover approximation in the worst 
case?

 Let's think about the cost per item incurred by each set we add:
 cs = wi/|Si ∩ R| for all s ∈ Si ∩ R
 Imagine we assign that cost in the algorithm when we cover those 

elements
 Clearly, these cs values end up being the total weight of our 

solution C:

�
𝑠𝑠𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠



 To bound our analysis, we will use the idea  of the harmonic 
function:

𝐻𝐻 𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
1
𝑛𝑛

= 1 +
1
2

+
1
3

+ ⋯+
1
𝑛𝑛

 This function grows…slowly but infinitely
 We will not prove it here, but it turns out that H(n) is Θ(log n)



 Let d* be the size of the largest set
 Claim:
 Set cover C found by our greedy algorithm has weight at most H(d*) 

times the optimal weight w*
 Proof:
 The optimal set cover C* has weight 𝑤𝑤∗ = ∑𝑆𝑆𝑖𝑖∈𝐶𝐶∗ 𝑤𝑤𝑖𝑖
 By our previous proof:

𝑤𝑤𝑖𝑖 ≥
1

𝐻𝐻(𝑑𝑑∗)
�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠



 Since C* is a set cover

�
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

�
𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 = �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠

 Putting it all, insanely,  together:

𝑤𝑤∗ = �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

𝑤𝑤𝑖𝑖 ≥ �
𝑆𝑆𝑖𝑖∈𝐶𝐶∗

1
𝐻𝐻(𝑑𝑑∗) �

𝑠𝑠∈𝑆𝑆𝑖𝑖

𝑐𝑐𝑠𝑠 ≥
1

𝐻𝐻 𝑑𝑑∗ �
𝑠𝑠∈𝑈𝑈

𝑐𝑐𝑠𝑠 =
1

𝐻𝐻 𝑑𝑑∗ �
𝑆𝑆𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖

∎



 All of that madness means that our approximation algorithm 
to set cover might return a set cover costing O(log d*) times 
the true optimal

 Worse, d* could be some constant fraction of n, making the 
approximation an O(log n) times worse than optimal

 This approximation is worse than any constant 
approximation, since our approximation actually will degrade 
as n gets larger

 To top it off, there's even a proof that this is the best you can 
approximate set cover, unless P = NP



 We've seen knapsack in dynamic programming (but with a 
pseudo-polynomial running time)

 We've seen knapsack as an NP-complete problem
 Now, can we approximate it in fully polynomial time?
 Recall:
 We have n items
 Each item has a weight wi and a value vi

 We want to maximize total value without going over our weight 
capacity W



 Our algorithm will take those items and the capacity W as well 
as a parameter ε

 We will find a set of items S within the weight capacity whose 
value is at worst 1

1+𝜀𝜀
of the optimal!

 And the algorithm will be polynomial for any particular choice 
of ε
 But it will not be polynomial in ε, if that makes sense

 This kind of algorithm is called a polynomial-time 
approximation scheme (PTAS)



 We had a pseudo-polynomial algorithm for knapsack that ran 
in time O(nW)

 The book gives details on how we can flip around weights and 
values to get a dynamic programming knapsack algorithm 
that runs in time O(n2v*) where v* is the largest value of any 
item

 Let's assume that algorithm is correct and build our 
approximation algorithm out of it



 We use a rounding factor b
 Each rounded value �𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖/𝑏𝑏 𝑏𝑏
 Note that 𝑣𝑣𝑖𝑖 ≤ �𝑣𝑣𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 + 𝑏𝑏
 To get small values, we can scale the rounded values down by 

b:

�𝑣𝑣𝑖𝑖 =
�𝑣𝑣𝑖𝑖
𝑏𝑏

= 𝑣𝑣𝑖𝑖/𝑏𝑏
 Note that the knapsack problem with values �𝑣𝑣𝑖𝑖 has the same 

optimum solution as the problem with �𝑣𝑣𝑖𝑖, if you scale the 
answers by b



 Knapsack-Approx(ε)
 Set b = (ε/(2n)) maxi vi

 Solve the Knapsack problem with values �𝑣𝑣𝑖𝑖
 Return the set S of items found



 We only rounded the values, not the weights, so the answer 
we get is legal

 The algorithm we use as a subroutine runs in time O(n2v*) 
where v* is the biggest value

 Since b = (ε/(2n)) maxi vi, the biggest value vj will also have the 
biggest rounded value:

�𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑗𝑗/𝑏𝑏 =
𝑣𝑣𝑗𝑗

𝑣𝑣𝑗𝑗𝜀𝜀/(2𝑛𝑛)
=

2𝑛𝑛
𝜀𝜀

= 𝑐𝑐 � 𝑛𝑛𝜀𝜀−1

 So our algorithm on rounded values runs in time O(n3ε-1)



 We established that ∑𝑖𝑖∈𝑆𝑆 𝑣𝑣𝑖𝑖 ≥ ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 − 𝑛𝑛𝑛𝑛
 Since ∑𝑖𝑖∈𝑆𝑆 �𝑣𝑣𝑖𝑖 ≥ �𝑣𝑣𝑗𝑗 = 2𝜀𝜀−1𝑛𝑛𝑛𝑛,

�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 ≥ 2𝜀𝜀−1𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛 = (2𝜀𝜀−1 − 1)𝑛𝑛𝑛𝑛

 For ε ≤ 1, 2 − 𝜀𝜀 ≥ 1, thus,

𝑛𝑛𝑛𝑛 ≤ 2 − 𝜀𝜀 𝑛𝑛𝑛𝑛 ≤ 𝜀𝜀�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖

 Leading finally to

�
𝑖𝑖∈𝑆𝑆∗

𝑣𝑣𝑖𝑖 ≤�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖 + 𝑛𝑛𝑏𝑏 ≤ (1 + 𝜀𝜀)�
𝑖𝑖∈𝑆𝑆

𝑣𝑣𝑖𝑖



 Some NP-hard problems can be approximated within a 
constant factor

 Some (like knapsack) can be approximated even better
 Within a factor of 1 + 𝜀𝜀 where we can pick the value of 𝜀𝜀

 Some can't be approximated within even a constant factor
 Unless P = NP





 There is no next time!



 Finish Assignment 7
 Due tonight by midnight!

 Review chapters 1 – 8 and 11
 Final exam:
 Wednesday, April 24, 2024
 8:00 – 10:00 a.m.
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